\(\int \frac {(a^2+2 a b x^3+b^2 x^6)^{5/2}}{x^8} \, dx\) [71]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 248 \[ \int \frac {\left (a^2+2 a b x^3+b^2 x^6\right )^{5/2}}{x^8} \, dx=-\frac {a^5 \sqrt {a^2+2 a b x^3+b^2 x^6}}{7 x^7 \left (a+b x^3\right )}-\frac {5 a^4 b \sqrt {a^2+2 a b x^3+b^2 x^6}}{4 x^4 \left (a+b x^3\right )}-\frac {10 a^3 b^2 \sqrt {a^2+2 a b x^3+b^2 x^6}}{x \left (a+b x^3\right )}+\frac {5 a^2 b^3 x^2 \sqrt {a^2+2 a b x^3+b^2 x^6}}{a+b x^3}+\frac {a b^4 x^5 \sqrt {a^2+2 a b x^3+b^2 x^6}}{a+b x^3}+\frac {b^5 x^8 \sqrt {a^2+2 a b x^3+b^2 x^6}}{8 \left (a+b x^3\right )} \]

[Out]

-1/7*a^5*((b*x^3+a)^2)^(1/2)/x^7/(b*x^3+a)-5/4*a^4*b*((b*x^3+a)^2)^(1/2)/x^4/(b*x^3+a)-10*a^3*b^2*((b*x^3+a)^2
)^(1/2)/x/(b*x^3+a)+5*a^2*b^3*x^2*((b*x^3+a)^2)^(1/2)/(b*x^3+a)+a*b^4*x^5*((b*x^3+a)^2)^(1/2)/(b*x^3+a)+1/8*b^
5*x^8*((b*x^3+a)^2)^(1/2)/(b*x^3+a)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1369, 276} \[ \int \frac {\left (a^2+2 a b x^3+b^2 x^6\right )^{5/2}}{x^8} \, dx=\frac {b^5 x^8 \sqrt {a^2+2 a b x^3+b^2 x^6}}{8 \left (a+b x^3\right )}+\frac {a b^4 x^5 \sqrt {a^2+2 a b x^3+b^2 x^6}}{a+b x^3}+\frac {5 a^2 b^3 x^2 \sqrt {a^2+2 a b x^3+b^2 x^6}}{a+b x^3}-\frac {a^5 \sqrt {a^2+2 a b x^3+b^2 x^6}}{7 x^7 \left (a+b x^3\right )}-\frac {5 a^4 b \sqrt {a^2+2 a b x^3+b^2 x^6}}{4 x^4 \left (a+b x^3\right )}-\frac {10 a^3 b^2 \sqrt {a^2+2 a b x^3+b^2 x^6}}{x \left (a+b x^3\right )} \]

[In]

Int[(a^2 + 2*a*b*x^3 + b^2*x^6)^(5/2)/x^8,x]

[Out]

-1/7*(a^5*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(x^7*(a + b*x^3)) - (5*a^4*b*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(4*x^
4*(a + b*x^3)) - (10*a^3*b^2*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(x*(a + b*x^3)) + (5*a^2*b^3*x^2*Sqrt[a^2 + 2*a*
b*x^3 + b^2*x^6])/(a + b*x^3) + (a*b^4*x^5*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(a + b*x^3) + (b^5*x^8*Sqrt[a^2 +
2*a*b*x^3 + b^2*x^6])/(8*(a + b*x^3))

Rule 276

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 1369

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Dist[(a + b*x^n + c*x^
(2*n))^FracPart[p]/(c^IntPart[p]*(b/2 + c*x^n)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {a^2+2 a b x^3+b^2 x^6} \int \frac {\left (a b+b^2 x^3\right )^5}{x^8} \, dx}{b^4 \left (a b+b^2 x^3\right )} \\ & = \frac {\sqrt {a^2+2 a b x^3+b^2 x^6} \int \left (\frac {a^5 b^5}{x^8}+\frac {5 a^4 b^6}{x^5}+\frac {10 a^3 b^7}{x^2}+10 a^2 b^8 x+5 a b^9 x^4+b^{10} x^7\right ) \, dx}{b^4 \left (a b+b^2 x^3\right )} \\ & = -\frac {a^5 \sqrt {a^2+2 a b x^3+b^2 x^6}}{7 x^7 \left (a+b x^3\right )}-\frac {5 a^4 b \sqrt {a^2+2 a b x^3+b^2 x^6}}{4 x^4 \left (a+b x^3\right )}-\frac {10 a^3 b^2 \sqrt {a^2+2 a b x^3+b^2 x^6}}{x \left (a+b x^3\right )}+\frac {5 a^2 b^3 x^2 \sqrt {a^2+2 a b x^3+b^2 x^6}}{a+b x^3}+\frac {a b^4 x^5 \sqrt {a^2+2 a b x^3+b^2 x^6}}{a+b x^3}+\frac {b^5 x^8 \sqrt {a^2+2 a b x^3+b^2 x^6}}{8 \left (a+b x^3\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.02 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.33 \[ \int \frac {\left (a^2+2 a b x^3+b^2 x^6\right )^{5/2}}{x^8} \, dx=\frac {\sqrt {\left (a+b x^3\right )^2} \left (-8 a^5-70 a^4 b x^3-560 a^3 b^2 x^6+280 a^2 b^3 x^9+56 a b^4 x^{12}+7 b^5 x^{15}\right )}{56 x^7 \left (a+b x^3\right )} \]

[In]

Integrate[(a^2 + 2*a*b*x^3 + b^2*x^6)^(5/2)/x^8,x]

[Out]

(Sqrt[(a + b*x^3)^2]*(-8*a^5 - 70*a^4*b*x^3 - 560*a^3*b^2*x^6 + 280*a^2*b^3*x^9 + 56*a*b^4*x^12 + 7*b^5*x^15))
/(56*x^7*(a + b*x^3))

Maple [A] (verified)

Time = 7.41 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.32

method result size
gosper \(-\frac {\left (-7 b^{5} x^{15}-56 a \,b^{4} x^{12}-280 a^{2} b^{3} x^{9}+560 a^{3} b^{2} x^{6}+70 a^{4} b \,x^{3}+8 a^{5}\right ) {\left (\left (b \,x^{3}+a \right )^{2}\right )}^{\frac {5}{2}}}{56 \left (b \,x^{3}+a \right )^{5} x^{7}}\) \(80\)
default \(-\frac {\left (-7 b^{5} x^{15}-56 a \,b^{4} x^{12}-280 a^{2} b^{3} x^{9}+560 a^{3} b^{2} x^{6}+70 a^{4} b \,x^{3}+8 a^{5}\right ) {\left (\left (b \,x^{3}+a \right )^{2}\right )}^{\frac {5}{2}}}{56 \left (b \,x^{3}+a \right )^{5} x^{7}}\) \(80\)
risch \(\frac {\sqrt {\left (b \,x^{3}+a \right )^{2}}\, b^{3} \left (\frac {1}{8} b^{2} x^{8}+a b \,x^{5}+5 a^{2} x^{2}\right )}{b \,x^{3}+a}+\frac {\sqrt {\left (b \,x^{3}+a \right )^{2}}\, \left (-10 a^{3} b^{2} x^{6}-\frac {5}{4} a^{4} b \,x^{3}-\frac {1}{7} a^{5}\right )}{\left (b \,x^{3}+a \right ) x^{7}}\) \(99\)

[In]

int((b^2*x^6+2*a*b*x^3+a^2)^(5/2)/x^8,x,method=_RETURNVERBOSE)

[Out]

-1/56*(-7*b^5*x^15-56*a*b^4*x^12-280*a^2*b^3*x^9+560*a^3*b^2*x^6+70*a^4*b*x^3+8*a^5)*((b*x^3+a)^2)^(5/2)/(b*x^
3+a)^5/x^7

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.24 \[ \int \frac {\left (a^2+2 a b x^3+b^2 x^6\right )^{5/2}}{x^8} \, dx=\frac {7 \, b^{5} x^{15} + 56 \, a b^{4} x^{12} + 280 \, a^{2} b^{3} x^{9} - 560 \, a^{3} b^{2} x^{6} - 70 \, a^{4} b x^{3} - 8 \, a^{5}}{56 \, x^{7}} \]

[In]

integrate((b^2*x^6+2*a*b*x^3+a^2)^(5/2)/x^8,x, algorithm="fricas")

[Out]

1/56*(7*b^5*x^15 + 56*a*b^4*x^12 + 280*a^2*b^3*x^9 - 560*a^3*b^2*x^6 - 70*a^4*b*x^3 - 8*a^5)/x^7

Sympy [F]

\[ \int \frac {\left (a^2+2 a b x^3+b^2 x^6\right )^{5/2}}{x^8} \, dx=\int \frac {\left (\left (a + b x^{3}\right )^{2}\right )^{\frac {5}{2}}}{x^{8}}\, dx \]

[In]

integrate((b**2*x**6+2*a*b*x**3+a**2)**(5/2)/x**8,x)

[Out]

Integral(((a + b*x**3)**2)**(5/2)/x**8, x)

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.24 \[ \int \frac {\left (a^2+2 a b x^3+b^2 x^6\right )^{5/2}}{x^8} \, dx=\frac {7 \, b^{5} x^{15} + 56 \, a b^{4} x^{12} + 280 \, a^{2} b^{3} x^{9} - 560 \, a^{3} b^{2} x^{6} - 70 \, a^{4} b x^{3} - 8 \, a^{5}}{56 \, x^{7}} \]

[In]

integrate((b^2*x^6+2*a*b*x^3+a^2)^(5/2)/x^8,x, algorithm="maxima")

[Out]

1/56*(7*b^5*x^15 + 56*a*b^4*x^12 + 280*a^2*b^3*x^9 - 560*a^3*b^2*x^6 - 70*a^4*b*x^3 - 8*a^5)/x^7

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.43 \[ \int \frac {\left (a^2+2 a b x^3+b^2 x^6\right )^{5/2}}{x^8} \, dx=\frac {1}{8} \, b^{5} x^{8} \mathrm {sgn}\left (b x^{3} + a\right ) + a b^{4} x^{5} \mathrm {sgn}\left (b x^{3} + a\right ) + 5 \, a^{2} b^{3} x^{2} \mathrm {sgn}\left (b x^{3} + a\right ) - \frac {280 \, a^{3} b^{2} x^{6} \mathrm {sgn}\left (b x^{3} + a\right ) + 35 \, a^{4} b x^{3} \mathrm {sgn}\left (b x^{3} + a\right ) + 4 \, a^{5} \mathrm {sgn}\left (b x^{3} + a\right )}{28 \, x^{7}} \]

[In]

integrate((b^2*x^6+2*a*b*x^3+a^2)^(5/2)/x^8,x, algorithm="giac")

[Out]

1/8*b^5*x^8*sgn(b*x^3 + a) + a*b^4*x^5*sgn(b*x^3 + a) + 5*a^2*b^3*x^2*sgn(b*x^3 + a) - 1/28*(280*a^3*b^2*x^6*s
gn(b*x^3 + a) + 35*a^4*b*x^3*sgn(b*x^3 + a) + 4*a^5*sgn(b*x^3 + a))/x^7

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a^2+2 a b x^3+b^2 x^6\right )^{5/2}}{x^8} \, dx=\int \frac {{\left (a^2+2\,a\,b\,x^3+b^2\,x^6\right )}^{5/2}}{x^8} \,d x \]

[In]

int((a^2 + b^2*x^6 + 2*a*b*x^3)^(5/2)/x^8,x)

[Out]

int((a^2 + b^2*x^6 + 2*a*b*x^3)^(5/2)/x^8, x)